
INTRODUCTION TO
EXPLOIT
DEVELOPMENT

INTRODUCTION TO
EXPLOIT
DEVELOPMENT

Nathan Ritchey and Michael TuckerNathan Ritchey and Michael Tucker

Who Am I (Nathan Ritchey)Who Am I (Nathan Ritchey)

 Have Bachelors in Computer Science
Member of CSG
Working on Masters with focus on Information

Assurance
 Some Interests

 Have Bachelors in Computer Science
Member of CSG
Working on Masters with focus on Information

Assurance
 Some Interests

Who Am I (Michael Tucker)Who Am I (Michael Tucker)

Graduate from UTD
Member of CSG and the CTF team
 Vulnerability analysis for Raytheon

Graduate from UTD
Member of CSG and the CTF team
 Vulnerability analysis for Raytheon

DefinitionsDefinitions

 Reverse Engineering
 Vulnerability Analysis
 Exploitation

 Reverse Engineering
 Vulnerability Analysis
 Exploitation

Reverse Engineering (RE)Reverse Engineering (RE)

 A systematic methodology for analyzing the
design of an existing device or system, either as
an approach to study the design or as a
prerequisite for re-design.

 A systematic methodology for analyzing the
design of an existing device or system, either as
an approach to study the design or as a
prerequisite for re-design.

Vulnerability Analysis (VA)Vulnerability Analysis (VA)

 Vulnerability analysis, also known as
vulnerability assessment, is a process that
defines, identifies, and classifies the security
holes (vulnerabilities) in a computer, network,
or communications infrastructure.

ExploitationExploitation

 “An exploit (from the verb to exploit, in the meaning of using
something to one’s own advantage) is a piece of software, a
chunk of data, or sequence of commands that takes
advantage of a bug, glitch or vulnerability in order to cause
unintended or unanticipated behavior to occur on computer
software, hardware, or something electronic (usually
computerized). Such behavior frequently includes such things
as gaining control of a computer system or allowing privilege
escalation or a denial-of-service attack.” - Wikipedia

 “An exploit (from the verb to exploit, in the meaning of using
something to one’s own advantage) is a piece of software, a
chunk of data, or sequence of commands that takes
advantage of a bug, glitch or vulnerability in order to cause
unintended or unanticipated behavior to occur on computer
software, hardware, or something electronic (usually
computerized). Such behavior frequently includes such things
as gaining control of a computer system or allowing privilege
escalation or a denial-of-service attack.” - Wikipedia

What’s the Difference?What’s the Difference?

 Reverse Engineering
 The act of figuring out the design and implementation of the

system.

 Vulnerability Analysis
 The act of finding flaws and weaknesses in any part of said system.

 Exploitation Development
 The act of turning said vulnerability into an actual means of

compromising the system’s confidentiality, integrity, and/or
availability.

 Hacking
 Utilization of the exploit.

 Reverse Engineering
 The act of figuring out the design and implementation of the

system.

 Vulnerability Analysis
 The act of finding flaws and weaknesses in any part of said system.

 Exploitation Development
 The act of turning said vulnerability into an actual means of

compromising the system’s confidentiality, integrity, and/or
availability.

 Hacking
 Utilization of the exploit.

The PayoffThe Payoff

 “Turning a software vulnerability into an exploit can be hard.
Google, for example, rewards security researchers for
finding vulnerabilities in its Chrome web browser. The payouts
Google make are in the range of $500 to $3000. However it
also runs competitions for security specialists to present
exploited vulnerabilities. These exploits are rewarded much
larger sums, as much as $60,000. The difference in payouts
reflects the magnitude of the task when trying to exploit
a vulnerability.”

-livehacking.com

 “Turning a software vulnerability into an exploit can be hard.
Google, for example, rewards security researchers for
finding vulnerabilities in its Chrome web browser. The payouts
Google make are in the range of $500 to $3000. However it
also runs competitions for security specialists to present
exploited vulnerabilities. These exploits are rewarded much
larger sums, as much as $60,000. The difference in payouts
reflects the magnitude of the task when trying to exploit
a vulnerability.”

-livehacking.com

LegalityLegality

 It’s alright to develop, but seek legal expertise
to implement.
Are you connected to the internet?
Are you accessing a remote system?
Do you have permission to access that

system?
 Look at “How to Disclose or Sell an Exploit

Without Getting in Trouble” by Jim Denaro

 It’s alright to develop, but seek legal expertise
to implement.
Are you connected to the internet?
Are you accessing a remote system?
Do you have permission to access that

system?
 Look at “How to Disclose or Sell an Exploit

Without Getting in Trouble” by Jim Denaro

Illegal ExamplesIllegal Examples

 Sony PlayStation 3
 Target
 Heartland
 Home Depot
 Adobe

 Sony PlayStation 3
 Target
 Heartland
 Home Depot
 Adobe

Pinball on Windows XPPinball on Windows XP

First hands-on example
Reverse Engineer the Pinball game
Conduct Vulnerability Analysis
Exploit the Pinball Game

First hands-on example
Reverse Engineer the Pinball game
Conduct Vulnerability Analysis
Exploit the Pinball Game

More In Depth ExampleMore In Depth Example

Exploitation
Memory Corruption
Buffer Overflow
Shell Code
NOP Sled

Exploitation
Memory Corruption
Buffer Overflow
Shell Code
NOP Sled

What is Memory CorruptionWhat is Memory Corruption

Memory corruption is one of the most
intractable class of programming errors, for two
reasons: The source of the memory
corruption and its manifestation may be far
apart, making it hard to correlate the cause
and the effect.

Memory corruption is one of the most
intractable class of programming errors, for two
reasons: The source of the memory
corruption and its manifestation may be far
apart, making it hard to correlate the cause
and the effect.

Memory CorruptionMemory Corruption

Code Injection
Where do we inject the malicious code?
How should we generate malicious code

(Shellcode)?
How should we redirect execution flow?

Code Injection
Where do we inject the malicious code?
How should we generate malicious code

(Shellcode)?
How should we redirect execution flow?

Memory CorruptionMemory Corruption

 Redirection of execution flow
 In x86, one way is to control a register called EIP,

also known as the instruction pointer register.
 This register is how the x86 architecture knows

which instruction to run next.
EIP, however, is not directly controlled by the

user.
 But how does one control EIP?

With a vulnerability of course!

 Redirection of execution flow
 In x86, one way is to control a register called EIP,

also known as the instruction pointer register.
 This register is how the x86 architecture knows

which instruction to run next.
EIP, however, is not directly controlled by the

user.
 But how does one control EIP?

With a vulnerability of course!

Buffer OverflowsBuffer Overflows

Any instance where a program writes
beyond the end of the allocated
memory for any buffer.
A perfect example can be shown with

strcpy() stack overflow.
gets() and read() are other examples

Any instance where a program writes
beyond the end of the allocated
memory for any buffer.
A perfect example can be shown with

strcpy() stack overflow.
gets() and read() are other examples

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

0x00000000

0xFFFFFFF

The Stack

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

0x00000000

0xFFFFFFF

The Stack

1st Step: Mark controlled input

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

0x00000000

0xFFFFFFF

The Stack

2nd Step: Mark Vulnerable code

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->

0x00000000

0xFFFFFFF

The Stack

EBP ->

Last Step: Analyze!

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->

0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

Saved EIPSaved EIP

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

Saved EIPSaved EIP

Saved EBPSaved EBP

MyVar[100]MyVar[100]

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

Saved EIPSaved EIP

Saved EBPSaved EBP

AAAAAAAAAA\nAAAAAAAAAA\n

Case 1: Input “A” ten times

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

Saved EIPSaved EIP

AAAA(EBP)AAAA(EBP)

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

…

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

…

Case 2: Input “A” 103 times

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

AAA\n(EIP)AAA\n(EIP)

AAAA(EBP)AAAA(EBP)

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

…

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

…

Case 3: Input “A” 107 times

Stack OverflowStack Overflow

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

AAA\n(EIP)AAA\n(EIP)

AAAA(EBP)AAAA(EBP)

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

…

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

…

EIP Control: But now what?

Stack Overflow Hands-onStack Overflow Hands-on

 Desktop/Simple/Stack 2(White Box)
 Desktop/Simple/Stack 1(Black Box)
 How much harder is it to do without source

code?
Can you think of other ways to get control?

 Desktop/Simple/Stack 2(White Box)
 Desktop/Simple/Stack 1(Black Box)
 How much harder is it to do without source

code?
Can you think of other ways to get control?

Shell Code(Code Injection)Shell Code(Code Injection)

Machine code used as the payload in the
exploitation of a software bug. While in a
program flow, shell code becomes its natural
continuation.

 Example

Machine code used as the payload in the
exploitation of a software bug. While in a
program flow, shell code becomes its natural
continuation.

 Example

Shell CodeShell Code

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

(EIP)(EIP)

(EBP)(EBP)

Shell Code
“calc.exe”
Shell Code
“calc.exe”

Change: Put Shell Code in
place of “A”’s

Shell CodeShell Code

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

AAA\n(EIP)AAA\n(EIP)

AAAA(EBP)AAAA(EBP)

Shell Code
“calc.exe”

AAAA
…

Shell Code
“calc.exe”

AAAA
…

Change: Put padding to
still cause overflow

Shell CodeShell Code

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

Shell Code Location(EIP)Shell Code Location(EIP)

AAAA(EBP)AAAA(EBP)

Shell Code
“calc.exe”

AAAA
…

Shell Code
“calc.exe”

AAAA
…

Modify: Change EIP to where
the Shell Code is

Shell CodeShell Code

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

#include <string.h>
void do_something(char *Buffer)
{

char MyVar[100];
strcpy(MyVar,Buffer);

}
int main (int argc, char **argv)
{

do_something(argv[1]);
}

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

Shell Code Location(EIP)Shell Code Location(EIP)

AAAA(EBP)AAAA(EBP)

Shell Code
“calc.exe”

AAAA
…

Shell Code
“calc.exe”

AAAA
…

Problem!: Why won’t this work?

Stack ArmorStack Armor

Windows has a native defense that adds
“0x00” to the front addresses in the stack.

 Strcpy, will stop on any “0x00” that is comes
across because it is considered end of string.

 This prevents us from just pointing to our shell
code!

 Now what?

Windows has a native defense that adds
“0x00” to the front addresses in the stack.

 Strcpy, will stop on any “0x00” that is comes
across because it is considered end of string.

 This prevents us from just pointing to our shell
code!

 Now what?

GadgetsGadgets

Gadgets are pieces of code borrowed from
the loaded program image or libraries to
circumvent the defenses.

 Used heavily in “Return to libc” and “ROP/JOP”
 So all we need is a simple gadget to get us

back to our Shell Code!

Gadgets are pieces of code borrowed from
the loaded program image or libraries to
circumvent the defenses.

 Used heavily in “Return to libc” and “ROP/JOP”
 So all we need is a simple gadget to get us

back to our Shell Code!

GadgetsGadgets

 A simple gadget that we can use is “jmp esp”
 Also known as a “Return to register”.
 This gadget allows us to go to the top of the stack,

where our shell code just happens to be located.
 So what we must do is find where a jmp esp is and then

have EIP pointed there.
 How do we find such a gadget though?
 Mona.py from the Immunity Debugger can help us here!

 !mona jmp –r esp

 A simple gadget that we can use is “jmp esp”
 Also known as a “Return to register”.
 This gadget allows us to go to the top of the stack,

where our shell code just happens to be located.
 So what we must do is find where a jmp esp is and then

have EIP pointed there.
 How do we find such a gadget though?
 Mona.py from the Immunity Debugger can help us here!

 !mona jmp –r esp

Shell Code with GadgetShell Code with Gadget

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

Gadget Location(EIP)Gadget Location(EIP)

AAAA(EBP)AAAA(EBP)

Shell Code
“calc.exe”

AAAA
…

Shell Code
“calc.exe”

AAAA
…

Change: Modify EIP to gadget
Possibilities: Found from mona.py
jmp esp
call esp
push esp ; ret(ROP)

Shell Code with GadgetShell Code with Gadget

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

Gadget Location(EIP)Gadget Location(EIP)

AAAA(EBP)AAAA(EBP)

Shell Code
“calc.exe”

AAAA
…

Shell Code
“calc.exe”

AAAA
…

Success!

Defeat: The stack armor was
defeated using
the gadget!

Pwn!: The shell code is then
executed

Shell Code Hands-onShell Code Hands-on

 Desktop/Advanced/abo1.exe
 Using your new knowledge of buffer overflows,

shell code, and gadgets get “calc.exe” to run
by controlling abo1.exe

One thing to note is not all of the addresses
mona.py finds are usable, why?

 How could we improve reliability of our
exploits?

 Desktop/Advanced/abo1.exe
 Using your new knowledge of buffer overflows,

shell code, and gadgets get “calc.exe” to run
by controlling abo1.exe

One thing to note is not all of the addresses
mona.py finds are usable, why?

 How could we improve reliability of our
exploits?

NOP SledNOP Sled

 Easy to jump to the wrong address where shell
code is located.

 The Address can change per system!
 NOP (“no operation”) helps with this issue

Can jump anywhere in NOP Sled and just
slide into the malicious shell code.

In x86 this is 0x90

 Easy to jump to the wrong address where shell
code is located.

 The Address can change per system!
 NOP (“no operation”) helps with this issue

Can jump anywhere in NOP Sled and just
slide into the malicious shell code.

In x86 this is 0x90

NOP SledNOP Sled

ESP ->
0x00000000

0xFFFFFFF

The Stack

argv[1]argv[1]
Gadget Location(EIP)Gadget Location(EIP)

\x90\x90\x90\x90(EBP)\x90\x90\x90\x90(EBP)

\x90\x90\x90\x90
Shell Code
“calc.exe”

\x90\x90\x90\x90

\x90\x90\x90\x90
Shell Code
“calc.exe”

\x90\x90\x90\x90

EBP ->

Change: Add 0x90 before and
after shell code

Finalized exploit, with reliability!

Preventing Stack OverflowPreventing Stack Overflow

 Stack Guard(Stack cookies)
 Stack Shield
 ProPolice
 DEP(W XOR X)
 ASLR

 Stack Guard(Stack cookies)
 Stack Shield
 ProPolice
 DEP(W XOR X)
 ASLR

Easy RM to MP3 ConverterEasy RM to MP3 Converter

 Going to use knowledge of buffer overflows in a
practical example.

 Goals:
1. Figure out what files the converter can take
2. Crash the Converter using malicious input within the

files you’ve scoped.
3. Take control and execute the “calc.exe” shell code!

 ~Hints~
1. Sometimes not all gadgets will work.
2. Mona.py/Immunity is your friend, use it!

 Going to use knowledge of buffer overflows in a
practical example.

 Goals:
1. Figure out what files the converter can take
2. Crash the Converter using malicious input within the

files you’ve scoped.
3. Take control and execute the “calc.exe” shell code!

 ~Hints~
1. Sometimes not all gadgets will work.
2. Mona.py/Immunity is your friend, use it!

The Game of DefensesThe Game of Defenses

 So what does one do when there are so many
defenses in place?

 Defeat them one at a time of course!
Sadly we do not have enough time to show how

to defeat all defenses, but at least there’s time
for one more.

 So what does one do when there are so many
defenses in place?

 Defeat them one at a time of course!
Sadly we do not have enough time to show how

to defeat all defenses, but at least there’s time
for one more.

Stack CookieStack Cookie

 Stack cookies are a defense in which in the
case that a buffer overflow were to occur, the
canary would trip a function call into
preventing the vulnerability from happening.

 In other words, it’s like a trip-wire mechanism.

 Stack cookies are a defense in which in the
case that a buffer overflow were to occur, the
canary would trip a function call into
preventing the vulnerability from happening.

 In other words, it’s like a trip-wire mechanism.

Stack CookieStack Cookie

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

(EIP)(EIP)

(EBP)(EBP)

Change: Now there’s a cookie
in the stack. \x01\x02\x03\x04(cookie)\x01\x02\x03\x04(cookie)

MyVar[100]MyVar[100]

What happens if we try to
overflow MyVar again?

Stack CookieStack Cookie

ESP ->
0x00000000

0xFFFFFFF

The Stack

EBP ->
argv[1]argv[1]

AAAA(EIP)AAAA(EIP)

AAAA(EBP)AAAA(EBP)
AAAA(cookie)AAAA(cookie)

AAAAAAAAAA
AAAAAAAAAA

…

AAAAAAAAAA
AAAAAAAAAA

…Uh Oh!: We did our buffer
overflow, but the
cookie also got
overwritten.

Failed: The stack cookie will
now cause the program
to exit.

Stack Cookie By-PassStack Cookie By-Pass

 So now what? The cookie has foiled our
malicious plans of running calculator!

Well it just so happens that there’s not only one
way to control the flow of code in a program.

 So now what? The cookie has foiled our
malicious plans of running calculator!

Well it just so happens that there’s not only one
way to control the flow of code in a program.

SEH, Exception HandlersSEH, Exception Handlers

 It just so happens that below us in the stack are
exception handler chains.

 Exception handlers are special subroutines
called into execution when exceptions occur
during the state of the program.

 Some examples would be division by zero or
out of memory conditions.

 It just so happens that below us in the stack are
exception handler chains.

 Exception handlers are special subroutines
called into execution when exceptions occur
during the state of the program.

 Some examples would be division by zero or
out of memory conditions.

Exception Handler ChainException Handler Chain

*Pointer to Exception Handler*Pointer to Exception Handler

Pointer to next SEH recordPointer to next SEH record

*Pointer to Exception Handler*Pointer to Exception Handler

Pointer to next SEH recordPointer to next SEH record

The Stack

Default exception handlerDefault exception handler

0xFFFFFFFF0xFFFFFFFF

Exception
Handler1

Exception
Handler2

MSVCRT!
exhandler

Exception Handler ChainException Handler Chain

*SEH*SEH

nSEHnSEH

*SEH*SEH

nSEHnSEH

The Stack

*EH*EH

0xFFFFFFFF0xFFFFFFFF

Exception
Handler1

Exception
Handler2

MSVCRT!
exhandler

So what is our goal?

Well it just so
happens that if you
control *SEH, you
once again control
the flow of the
program(EIP).

But how does one
do that?

With a vulnerability
of course!

Stack Cookie By-PassStack Cookie By-Pass

ESP ->
0x00000000
The Stack

EBP ->

*SEH*SEH

nSEHnSEH
Exception
Handler

argv[1]argv[1]
AAAA(EIP)AAAA(EIP)

AAAA(EBP)AAAA(EBP)
AAAA(cookie)AAAA(cookie)

AAAAAAAAAA
AAAAAAAAAA

…

AAAAAAAAAA
AAAAAAAAAA

…

Let’s continue our
vulnerability by
continuing the
overflow even
further than
before.

Change: Now let’s
add the chain to
the stack.

Stack Cookie By-PassStack Cookie By-Pass

ESP ->
0x00000000
The Stack

EBP ->

AAAA(SEH)AAAA(SEH)

AAAA(nSEH)AAAA(nSEH)
????

AAAAAAAA

AAAAAAAA
AAAA(EIP)AAAA(EIP)

AAAA(EBP)AAAA(EBP)
AAAA(cookie)AAAA(cookie)

AAAAAAAAAA
AAAAAAAAAA

…

AAAAAAAAAA
AAAAAAAAAA

…

Using this we can
now use a
gadget to get
back to Shell
Code.

Let’s modify our
exploit a bit.

Flow Hijack: We
now control the
SEH’s pointer!

Stack Cookie By-PassStack Cookie By-Pass

ESP ->
0x00000000
The Stack

EBP ->

Pop reg
Pop reg

ret

AAAA(argv[1])AAAA(argv[1])

\x90\x90\x90\x90(EIP)\x90\x90\x90\x90(EIP)

\x90\x90\x90\x90(EBP)\x90\x90\x90\x90(EBP)
\x90\x90\x90\x90(cookie)\x90\x90\x90\x90(cookie)

\x90\x90\x90
…

\x90\x90\x90
…

Calc.exeCalc.exe

Gadget location(SEH)Gadget location(SEH)

AAAA(nSEH)AAAA(nSEH)

Change: We
moved the shell
code down
below our SEH
chain.

So what kind of
gadget do we
want in this case?

Well Pop Pop Ret
will do!

Stack Cookie By-PassStack Cookie By-Pass

ESP ->
0x00000000
The Stack

EBP ->

Pop reg
Pop reg

ret

AAAA(argv[1])AAAA(argv[1])

\x90\x90\x90\x90(EIP)\x90\x90\x90\x90(EIP)

\x90\x90\x90\x90(EBP)\x90\x90\x90\x90(EBP)
\x90\x90\x90\x90(cookie)\x90\x90\x90\x90(cookie)

\x90\x90\x90
…

\x90\x90\x90
…

Calc.exeCalc.exe

Gadget location(SEH)Gadget location(SEH)

Jmp 0x6(nSEH)Jmp 0x6(nSEH)

Using “pop pop
ret” will let us
move back to the
nSEH in the stack.

If it just so happens
that if we replace
nSEH with “jmp
0x6”

We then get to
hop exactly six
places foward,
and run calc.exe!

Final ExploitFinal Exploit

ESP ->
0x00000000
The Stack

EBP ->

Pop reg
Pop reg

ret

\x90\x90\x90\x90(argv[1])\x90\x90\x90\x90(argv[1])

\x90\x90\x90\x90(EIP)\x90\x90\x90\x90(EIP)

\x90\x90\x90\x90(EBP)\x90\x90\x90\x90(EBP)
\x90\x90\x90\x90(cookie)\x90\x90\x90\x90(cookie)

\x90\x90\x90
…

\x90\x90\x90
…

\x90\x90\x90\x90
Calc.exe

\x90\x90\x90\x90
Calc.exe

Gadget location(SEH)Gadget location(SEH)

\xeb\x06\x90\x90(nSEH)\xeb\x06\x90\x90(nSEH)

DVD X Player 5.5 ProDVD X Player 5.5 Pro

 Stack Cookie and Armor? Oh my!
Can you get around it?
 ~Hints~

1. For an Exception handler to trigger you must
cause an exception in the first place.

2. Mona.py has a command that may help in this
case!

 Stack Cookie and Armor? Oh my!
Can you get around it?
 ~Hints~

1. For an Exception handler to trigger you must
cause an exception in the first place.

2. Mona.py has a command that may help in this
case!

Questions?Questions?

Mona.py cheat sheetMona.py cheat sheet

 Mona’s Help command:

 !mona help

 Create a pattern: !mona pattern_create <size>

 !mona pattern_create 512

 Find offset in pattern: !mona pattern_offset <hex>

 !mona pattern_offset 41314132, finds the offset in the
pattern of A1A2

 Find all jump based gadgets(jmp esp, push esp retrn):
 !mona jmp –r esp, finds all jump gadgets for the register esp.

 Find all seh gadgets(pop pop retn):

 !mona seh

 Mona’s Help command:

 !mona help

 Create a pattern: !mona pattern_create <size>

 !mona pattern_create 512

 Find offset in pattern: !mona pattern_offset <hex>

 !mona pattern_offset 41314132, finds the offset in the
pattern of A1A2

 Find all jump based gadgets(jmp esp, push esp retrn):
 !mona jmp –r esp, finds all jump gadgets for the register esp.

 Find all seh gadgets(pop pop retn):

 !mona seh

